

Typical Features

- ◆ Wide input voltage range, non-isolated & regulated output
- Efficiency up to 95% (Typ.)
- Low standby power consumption
- Mini SIP package
- Short circuit protection
- Available for negative output
- ◆ Operating temperature from -40°C to +85°C
- Plastic Case, flame class UL94-V0

Test Condition: Unless otherwise specified, all parameter values had been tested at nominal input voltage, pure resistive rated load, and at room temperature 25°C.

Application Field

This series of products can be widely used in the fields of instrument, communication, pure digital circuit, general low frequency analog circuit, relay drive circuit, data exchange circuit, etc.

Typical Product List									
Certificate	Part No.	Input Voltage Range (VDC)		Output Voltage/ Current (Vo/Io)		Max Capacitive Load	Ripple & Noise (20MHz) Max/Typ.	@full	ncy (%) load vp.)
		Nom.	Range	Vo (VDC)	lo (mA)	uF	mVp-p	Vin (Min)	Vin (Max)
-	K783V3M-1000R3G	24	6-34	3.3	1000	680	75/40	90	81
-	K7805M-1000R3G	24	8-34	5	1000	680	75/40	92	86
		12	8-27	-5	-500	330	75/40	85	81
-	K7806M-1000R3G	24	10-34	6.5	1000	680	75/40	92	86
-	K7809M-1000R3G	24	13-34	9	1000	680	75/40	93	90
-	K7812M-1000R3G	24	15-34	12	1000	680	75/40	95	91
		12	8-20	-12	-300	330	75/40	88	87
-	1/704EM 4000F20	24	20-34	15	1000	680	75/40	95	91
	K7815M-1000R3G	12	8-18	-15	-300	330	75/40	87	88

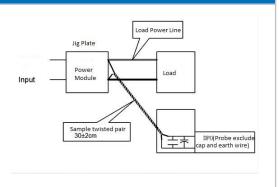
Note 1: It is recommended to connect an electrolytic capacitor (22uF/50V) to the input to protect the unit against the peak voltage when the input voltage is more than 30VDC.

Note 2: The Ripple & Noise is tested by the twisted pair method.

Input Specifications						
Item	Operation Conditions	Min.	Тур.	Max.	Unit	
N 1 11 10 1	Positive output		0.2	1.5	A	
No-load Input Current	Negative output		1	4	mA	
Input Reversed	Not allowed		-			

Input Filter	Capacitor filter					
Hot Plug	Una		vailable			
Output Specifications						
Item	Operation Conditions		Min.	Тур.	Max.	Unit
Output Valta as Assument	Full input voltage range, full load	Output 3.3V		±2	±4	%
Output Voltage Accuracy		Others		±2	±3	
Load Degulation	10% ~ 100% load	V+ output		±0.4	±0.6	%
Load Regulation		V- output		±0.4	±0.8	
Line Regulation	Full input voltage range, full load			±0.2	±0.4	
Temp. Drift Coefficient	100% Load				±0.03	%/°C
Transient Response Deviation	Nominal input voltage, 25%-50%-25% &			50	300	mV
Transient Recovery Time	50%-75%-50% load step change			0.1	1	mS
Short Circuit Protection				Continuous	s, Self-recover	У

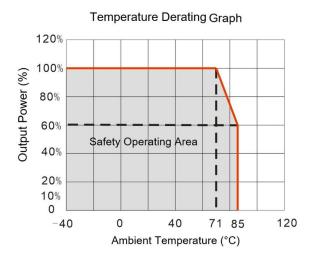
Item	Operation Cor	nditions	Min.	Тур.	Max.	Unit
Switching Frequency	Nominal input voltage, full load	Output 3.3V & 5V		520		KHz
		Others		800		
Operating Temperature	Refer to the Temperature Derating Graph		-40		+85	
Storage Temperature			-55		+125	°C
Case temperature rise	Operating at Ta =25℃			30°		
Pin Soldering Temperature	1.5mm from the case, 10S				300	
Relative humidity	No condensation		5		95	%RH
Vibration		10-15	10-150Hz, 5G, 30 Min. along X, Y and Z			
MTBF	MIL-HDBK-217F@25°C		3500			K hours
Case Material		lame class U	me class UL94-V0			
Unit Weight	1.4g (Typ.)					
Cooling Method	Natural air					
Dooking	Tube size (526x9	43PCS/Tube				
Packing -	Carton size (542x	3440PCS/Carton (total 80 tubes)				
Unit Dimensions	L x W x H 11.60× 7.5		0 × 10.20 mm			


EMC Performances						
EMI	CE	CISPR32/EN55032, CLASS B (with the Recommended EMC Circuit)				
CIVII	RE	CISPR32/EN55032, CLASS B (with the Recommended EMC Circuit)				
	ESD	IEC/EN61000-4-2, Contact ±4kV perf.Criteria B				
	RS	IEC/EN61000-4-3, 10V/m perf. Criteria A				
EMS	EFT	IEC/EN61000-4-4, ±1kV perf. Criteria B (with the Recommended EMC Circuit)				
	Surge	IEC/EN61000-4-5, Line to line ±1kV perf. Criteria B (with the Recommended EMC Circuit)				
	CS	IEC/EN61000-4-6, 3Vr.m.s perf. Criteria A (with the Recommended EMC Circuit)				

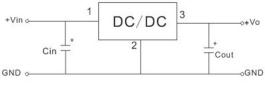
Mechanical Dimensions 11.60 7.50 [0.46][0.30] Marking : 10.20 [0.40] 2 3 0.50 Φ 1.00 [Φ0.039] [0.02] 4.10 PCB layout vertical view 0.50 [0.16] 1.85 Grid 2.54x2.54[0.10x0.10] [0.02][0.073]3.01 0.30 Unit: mm[inch] [0.02] [0.012] [0.10]Pin section tolerance ±0.10[±0.004] General tolerance ±0.50[±0.020] **Pin-out Function Description** Pin No. 1 2 3 +Vin GND(Common) Positive output +Vo Negative output +Vin -Vo GND(Common)

Note 1: Please take the pin definition on the product marking as the right one if there is any difference than the description on the data sheet.

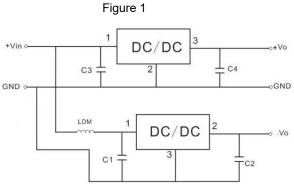
Ripple & Noise Test Instruction (Twisted Pair Method, 20MHz bandwidth)


- 1) The Ripple & noise test needs 12# twisted pair cables, an oscilloscope which bandwidth should be set to 20MHz, 0.1uF polypropylene capacitor and 10uF high-frequency low-resistance electrolytic capacitor are connected in parallel with the probes (100M bandwidth). The oscilloscope should be set at the Sample Mode.
- 2) The test diagram is shown on the right. The converter output connects to the electronic load by the jig with cables which size should be defined according to the output current value. The twisted pair (length 30cm±2 cm) should be connected in parallel with the load, the location is as close as possible to the output pins or terminals. The test can be start after input power on.

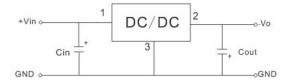
Product Characteristics Graph


Recommended Circuits for Application

1. Requirements for output load


- a. To ensure the converter operating efficiently and reliably, its minimum load should not be less than 10% of the rated load. It is recommended to connect a resistor in parallel to the output when the real load is less than 10% (the sum of the power consumed should be bigger than or equal to 10% of the rated power).
- b. The maximum capacitive load is tested at nominal input voltage and full load. The converter may not start or be damaged at the capacitive over-load.

2. Typical application circuits


To effectively decrease the input and output ripple and noise, a capacitor filter can be connected to the input and output as below circuit diagrams (Figure 1 for the Positive output application, Figure 2 for the Negative output application and Figure 3 for Positive & Negative outputs connected in parallel application, 10uH is recommended for LDM). The suitable filtering capacitors should be chosen as the recommended capacitive load values in Table 1. The converter could not start if the capacitance is too big.

Positive output circuit diagram

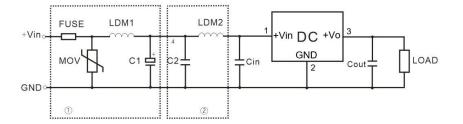
Positive & Negative outputs connected in parallel application circuit diagram

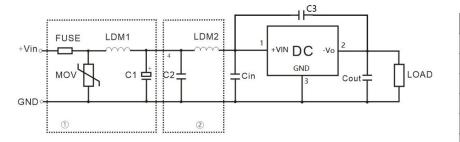
Negative output circuit diagram

Figure 2

Recommended Capacitive Load Values (Table 1)

Part No.	C1/C3 (Ceramic capacitor)	C2/C4 (Ceramic capacitor)	
K783V3M-1000R3G		$22\mu\text{F}/10\text{V}$	
K7805M-1000R3G		22 µ F/10V	
K7806M-1000R3G	10 μF/50V	22 µ F/16V	
K7809M-1000R3G		22 µF/16V	
K7812M-1000R3G] [22 µ F/25V	
K7815M-1000R3G	1 [22 µF/25V	


Figure 3


3. Recommended EMC circuit diagrams

FUSE	TBD by input current
MOV	20D470K
C1	680 μ F/50V
C2	4. 7 μ F/50V
Cin/Cout	Refer to table 1
LDM1	82 µ H
LDM2	12 µ H

Negative output

FUSE	TBD by input current
MOV	20D470K
C1	680 μ F/50V
C2/C3	4. 7 μ F/50V
Cin/Cout	Refer to table 1
LDM1	82 µ H
LDM2	12 µ H

Note: Part ① circuit is for EMS test, part ② for EMI filtering, both can be adjusted according to the actual situation.

Application Notice

- 1. The product performance in this manual cannot be guaranteed if it works at a lower load than the minimum load condition.
- 2. All values or indicators in this manual have been tested based on Aipupower test specifications.

Guangzhou Aipu Electron Technology Co., Ltd

Address: Building 4, HEDY Park, No.63, Punan Road, Huangpu Dist, Guangzhou, China.

Tel: 86-20-84206763 Fax: 86-20-84206762 HOTLINE: 400-889-8821 E-mail: sales@aipu-elec.com Website: https://www.aipupower.com